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                                                    UNIT – III 

➢ Planning: 

 

• Definition of Classical Planning 

 

• planning researchers have settled on a factored representation one in which a state 

of the world is represented by a collection of variables. We use a language called 

PDDL, the Planning Domain Definition Language, that allows us to express all 4T 

n2 PDDL actions with one action schema. There have been several versions of 

PDDL. 

• We now show how PDDL describes the four things we need to define a search 

problem the initial state, the actions that are available in a state, the result of applying 

an action, and the goal test. 

• Each state is represented as a conjunction of fluents that are ground, functionless 

atoms. For example, Poor ∧ Unknown might represent the state of a hapless agent, 

and a state in a package delivery problem might be at (Truck 1, Melbourne) ∧ At 

(Truck 2, Sydney) 

• Database semantics is used: the closed-world assumption means that any fluents that 

are not mentioned are false, and the unique names assumption means that Truck 1 

and Truck 2 are distinct.  

• The following fluents are not allowed in a state: At (x, y) (because it is non-ground), 

¬Poor (because it is a negation), and at (Father (Fred), Sydney) (because it uses a 

function symbol). The representation of states is carefully designed so that a state 

can be treated either as a conjunction of fluents, which can be manipulated by logical 

inference, or as a set SET SEMANTICS of fluents, which can be manipulated with 

set operations.  

• Actions are described by a set of action schemas that implicitly define the 

ACTIONS(s) and RESULT (s, a) functions needed to do a problem-solving search. 



That any system for action description needs to solve the frame problem to say what 

changes and what stays the same as the result of the action. 

• A set of ground (variable-free) actions can be represented by a single action schema. 

The schema is a lifted representation it lifts the level of reasoning from propositional 

logic to a restricted subset of first-order logic. For example, here is an action schema 

for flying a plane from one location to another: 

Action (Fly (p, from, to), 

PRECOND:At(p, from ) ∧ Plane(p) ∧ Airport (from) ∧ Airport (to) 

EFFECT:¬At(p, from ) ∧ At(p, to)) 

 For example, 

∀ p, from, to (Fly (p, from, to) ∈ ACTIONS(s)) ⇔ 

s |= (At  (p, from) ∧ Plane(p) ∧ Airport (from) ∧ Airport (to))  

• We say that action a is applicable in state s if the preconditions are satisfied by s. 

When an action schema a contains variables, it may have multiple applicable 

instantiations. For example, with the initial state defined in Figure 10.1, the Fly 

action can be instantiated as Fly (P1, SFO, JFK) or as Fly (P2, JFK, SFO), both 

of which are applicable in the initial state. If an action a has v variables, then, in a 

domain with k unique names of objects, it takes O(vk) time in the worst case to find 

the applicable ground actions. 

• Sometimes we want to propositionalize a PDDL problem—replace each action schema 

with a set of ground actions and then use a propositional solver such as SATPLAN 

to find a solution. However, this is impractical when v and k are large. 

• The result of executing action a in state s is defined as a state sJ which is 

representedby the set of fluents formed by starting with s, removing the fluents that 

appear as negative literals in the action’s effects (what we call the delete list or 

DEL(a)), and adding the fluents that are positive literals in the action’s effects (what 

we call the add list or ADD(a)): 



RESULT (s, a) = (s − DEL(a)) ∪ ADD(a).   

• For example, with the action Fly (P1, SFO, JFK), we would remove At (P1, 

SFO) and add At (P1, JFK). It is a requirement of action schemas that any variable 

in the effect must also appear in the precondition. That way, when the precondition 

is matched against the state s, all the variables will be bound, and RESULT (s, a) 

will therefore have only ground atoms. In other words, ground states are closed 

under the RESULT operation. 

• Also note that the fluents do not explicitly refer to time, there         we needed superscripts 

for time, and successor-state axioms of the form 

Ft+1 ⇔ ActionCausesF t ∨ (Ft ∧ ¬ActionCausesNotF t). 

• In PDDL the times and states are implicit in the action schemas: the precondition 

always refers to time t and the effect to time t + 1. 

• A set of action schemas serves as a definition of a planning domain. A specific 

problem 

within the domain is defined with the addition of an initial state and a goal. 

 Example: The spare tire problem 

Consider the problem of changing a flat tire The goal is to have a good spare tire properly 

mounted onto the car’s axle, where the initial state has a flat tire on the axle and a good spare 

tire in the trunk. To keep it simple, our version of the problem is an abstract one, with no 

sticky lug nuts or other complications. There are just four actions: removing the spare from 

the trunk, removing the flat tire from the axle, putting the spare on the axle, and leaving the 

car unattended overnight. We assume that the car is parked in a particularly bad 

neighborhood, so that the effect of leaving it overnight is that the tires disappear. A solution 

to the problem is [Remove (Flat, Axle), Remove (Spare, Trunk), PutOn (Spare, Axle)]. 

 

 



Init (Tire(Flat )  ∧ Tire(Spare)  ∧ At(Flat , Axle)  ∧ At(Spare, Trunk )) 

Goal (At (Spare, Axle)) Action(Remove(obj , loc), 

PRECOND: At(obj , loc) 

EFFECT: ¬ At(obj , loc) ∧ At(obj , Ground )) 

Action(PutOn(t , Axle), 

PRECOND: Tire(t) ∧ At(t , Ground) ∧ ¬ At(Flat , Axle) 

EFFECT: ¬ At(t , Ground ) ∧ At(t , Axle)) Action(LeaveOvernight , 

PRECOND: 

EFFECT: ¬ At(Spare, Ground ) ∧ ¬ At(Spare, Axle) ∧ ¬ At(Spare, Trunk ) 

∧¬ At(Flat, Ground ) ∧ ¬ At(Flat , Axle) ∧ ¬ At(Flat, Trunk )) 

The simple spare tire problem. 

 Example: The blocks world 

One of the most famous planning domains is known as the block’s world. This domain 

consists of a set of cube-shaped blocks sitting on a table.2 The blocks can be stacked, but 

only one block can fit directly on top of another. A robot arm can pick up a block and move 

it to another position, either on the table or on top of another block. The arm can pick up 

only one block at a time, so it cannot pick up a block that has another one on it.  

 



Init (On(A, Table)  ∧ On(B, Table )  ∧ On(C, A) 

∧ Block (A) ∧ Block (B) ∧ Block (C) ∧ Clear (B) ∧ Clear (C)) 

Goal (On(A, B)  ∧ On(B, C)) 

Action (Move (b, x, y), 

PRECOND: On(b, x) ∧ Clear (b) ∧ Clear (y) ∧ Block (b) ∧ Block (y) ∧ 

(b/=x) ∧ (b=/ y) ∧ (x/=y), 

EFFECT: On (b, y) ∧ Clear (x) ∧ ¬On (b, x) ∧ ¬Clear (y)) 

Action (MoveToTable (b, x), 

PRECOND: On (b, x) ∧ Clear (b) ∧ Block (b) ∧ (b/=x), EFFECT: On (b, Table) ∧ 

Clear (x) ∧ ¬On (b, x)) 

A planning problem in the block’s world: building a three-block tower. One solution 

is the sequence [MoveToTable (C, A), Move (B, Table, C), Move (A, Table, B)]. 

 

 

 

 

 

Start 
State 

Goal State 

 Diagram of the blocks-world problem in Figure  

 

 

 

 

 



The goal will always be to build one or more stacks of blocks, specified in terms of what 

blocks are on topof what other blocks.  

Example: A goal might be to get block A on B and block B on C 

• We use on (b, x) to indicate that block b is on x, where x is either another block or 

the table. The action for moving block b from the top of x to the top of y will be 

Move (b, x, y). Now, one of the preconditions on moving b is that no other block be 

on it. In first-order logic, this would be ¬∃ x on (x, b) or, alternatively, ∀ x ¬On (x, b). 

Basic PDDL does not allow quantifiers, so instead we introduce a predicate Clear (x) 

that is true when nothing is on x. 

• The action Move moves a block b from x to y if both b and y are clear. After the 

move is made, b is still clear but y is not. A first attempt at the Move schema is 

Action (Move (b, x, y), 

PRECOND: On (b, x) ∧ Clear (b) ∧ Clear (y), 

EFFECT: On (b, y) ∧ Clear (x) ∧ ¬On (b, x) ∧ ¬Clear (y)).  

Unfortunately, this does not maintain Clear properly when x or y is the table.  

• When x is the Table, this action has the effect Clear (Table), but the table should not 

become clear; and when y = Table, it has the precondition Clear (Table), but the 

table does not have to be clear 
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for us to move a block onto it. To fix this, we do two things.  

First: we introduce another action to move a block b from x to the table: 

Action (MoveToTable (b, x), 

PRECOND: On (b, x) ∧ Clear (b), 

EFFECT: On (b, Table) ∧ Clear (x) ∧ ¬On (b, x)).  

Second: we take the interpretation of Clear (x) to be “there is a clear space on x to hold a 

block.” Under this interpretation, Clear (Table) will always be true.  

• The only problem is that nothing prevents the planner from using Move (b, x, Table) 

instead of MoveToTable (b, x). We could live with this problem it will lead to a larger-

than-necessary search space, but will not lead to incorrect answers or we could introduce 

the predicate Block and add Block (b) ∧ Block (y) to the precondition of Move. 

 THE COMPLEXITY OF CLASSICAL PLANNING 

• we consider the theoretical complexity of planning and distinguish two decision 

problems. PlanSAT is the question of whether there exists any plan that solves a 

planning problem. Bounded PlanSAT asks whether there is a solution of length k or 

less; this can be used to find an optimal plan. 

• The first result is that both decision problems are decidable for classical planning. The 

proof follows from the fact that the number of states is finite. But if we add function 

symbols to the language, then the number of states becomes infinite, and PlanSAT 

becomes only semidecidable:  

• An algorithm exists that will terminate with the correct answer for any solvable problem, 

but may not terminate on unsolvable problems. The Bounded PlanSAT problem 

remains decidable even in the presence of function symbols.  

• These worst-case results may seem discouraging. We can take solace in the fact that 

agents are usually not asked to find plans for arbitrary worst-case problem instances, 

but rather are asked for plans in specific domains (such as blocks-world problems with n 

blocks), which can be much easier than the theoretical worst case.  

• For many domains (including the blocks world and the air cargo world), Bounded 

PlanSAT is NP-complete while PlanSAT is in P; in other words, optimal planning is 

usually hard, but sub-optimal planning is sometimes easy. To do well on easier-than-

worst-case problems, we will need good search heuristics.  
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• That’s the true advantage of the classical planning formalism: it has facilitated the 

develop- ment of very accurate domain-independent heuristics, whereas systems based 

on successor- state axioms in first-order logic have had less success in coming up with 

good heuristics. 

 PLANNING AS STATE-SPACE SEARCH 

• We saw how the description of a planning problem defines a search problem: we can 

search from the initial state through the space of states, looking for a goal.  

• One of the nice advantages of the declarative representation of action schemas is that we 

can also search backward from the goal, looking for the initial state. compares forward and 

backward searches. 

  1. Forward (progression) state-space search 

2.  Backward (progression) state-space search 

 

• Forward search is prone to exploring irrelevant actions. Consider the noble task of 

buying a copy of AI: A Modern Approach from an online bookseller. Suppose there is 

an action schema Buy(isbn) with effect Own(isbn). ISBNs are 10 digits, so this action 

schema represents 10 billion ground actions. An uninformed forward-search algorithm 

would have to start enumerating these 10 billion actions to find one that leads to the 

goal. 
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At (P1, B) 

At (P2, B) 

 Two approaches to searching for a plan. (a) Forward (progression) search through 

the space of states, starting in the initial state and using the problem’s actions to 

search forward for a member of the set of goal states. (b) Backward (regression) 

search through sets of relevant states, starting at the set of states representing the goal 

and using the inverse of the actions to search backward for the initial state. 
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• Backward (regression) relevant-states search 

• In regression search we start at the goal and apply the actions backward until we find 

a sequence of steps that reaches the initial state.  

• It is called relevant-states search because we only consider actions that are relevant to 

the goal (or current state). As in belief-state search  there is a set of relevant states to 

consider at each step, not just a single state. 

• We start with the goal, which is a conjunction of literals forming a description of a set of 

states  

 Example, the goal ¬Poor ∧ Famous describes those states in which Poor is false, Famous is true, 

and any other fluent can have any value. If there are n ground fluents in a domain, then there 

are 2n ground states (each fluent can be true or false), but 3n descriptions of sets of goal states 

(each fluent can be positive, negative, or not mentioned). 

• In general, backward search works only when we know how to regress from a state 

description to the predecessor state description.  

 Example:it is hard to search backwards for a solution to the n-queens problem because there 

is no easy way to describe the states that are one move away from the goal. Happily, the 

PDDL representation was designed to make it easy to regress actions if a domain can be 

expressed in PDDL, then we can do regression search on it. Given a ground goal description 

g and a ground action a, the regression from g 

over a give us a state description gJ defined by 

gJ = (g − ADD(a)) ∪ Precond (a). 

• The effects that were added by the action need not have been true before, and also the 

preconditions must have held before, or else the action could not have been executed. 

Note that DEL(a) does not appear in the formula; that’s because while we know the 

fluents in DEL(a) are no longer true after the action, we don’t know whether or not they 

were true before, so there’s nothing to be said about them. 

• To get the full advantage of backward search, we need to deal with partially uninstanti- 

ated actions and states, not just ground ones. For example, suppose the goal is to deliver a 

spe- cific piece of cargo to SFO: At (C2, SFO). That suggests the action  

Unload (C2, p
J, SFO): 

Action (Unload (C2, p
J, SFO), 
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PRECOND: In (C2, p
J) ∧ At (pJ, SFO) ∧ Cargo(C2) ∧ Plane(pJ) ∧ Airport (SFO) 

EFFECT: At (C2, SFO) ∧ ¬In (C2, p
J). 

The regressed state description is 

gJ = In (C2, p
J) ∧ At (pJ, SFO) ∧ Cargo(C2) ∧ Plane(pJ) ∧ Airport (SFO). 

• The final issue is deciding which actions are candidates to regress over. In the forward 

direc- tion we chose actions that were applicable those actions that could be the next 

step in the plan. In backward search we want actions that are relevant those actions that 

could be the last step in a plan leading up to the current goal state. 

 

➢ PLANNING GRAPHS 

• All of the heuristics we have suggested can suffer from inaccuracies. This section shows 

how a special data structure called a planning graph can be used to give better heuristic 

estimates.  

• These heuristics can be applied to any of the search techniques we have seen so far. 

Alternatively, we can search for a solution over the space formed by the planning graph, 

using an algorithm called GRAPHPLAN. 

• A planning problem asks if we can reach a goal state from the initial state. Suppose we 

are given a tree of all possible actions from the initial state to successor states, and their 

suc- cessors, and so on.  

• A planning graph is polynomial- size approximation to this tree that can be constructed 

quickly. The planning graph can’t answer definitively whether G is reachable from S0, 

but it can estimate how many steps it takes to reach G. The estimate is always correct 

when it reports the goal is not reachable, and it never overestimates the number of steps, 

so it is an admissible heuristic. 

• A planning graph is a directed graph organized into levels: first a level S0 for the initial 

state, consisting of nodes representing each fluent that holds in S0; thena level A0 

consisting of nodes for each ground action that might be applicable in S0; then 

alternating levels Si followed by Ai; until we reach a termination condition 

• Si contains all the literals that could hold at time i, depending on the actions executed 

at preceding time steps. If it is possible that either P or ¬P could hold, then both will be 

represented in Si. Also roughly speaking, Ai contains all the actions that could have 

their preconditions satisfied at time i. We say “roughly speaking” because the planning 
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graph records only a restricted subset of the possible negative interactions among 

actions; therefore, a literal might show up at level Sj when actually it could not be true 

until a later level, if at all. (A literal will never show up too late.)  

• Despite the possible error, the level j at which a literal first appears is a good estimate 

of how difficult it is to achieve the literal from the initial state. 

 

 

• A mutex relation holds between two actions at a given level if any of the following three 

conditions holds: 

• Inconsistent effects: one action negates an effect of the other.  

•  Example: Eat (Cake) and the persistence of Have (Cake) have inconsistent effects 

because they disagree on the effect Have (Cake). 

• Interference: one of the effects of one action is the negation of a precondition of the 

other. For example, eat (Cake) interferes with the persistence of Have (Cake) by negat- 

ing its precondition. 

• Competing needs: one of the preconditions of one action is mutually exclusive with a 

precondition of the other. For example, Bake (Cake) and Eat (Cake) are mutex because 

they compete on the value of the Have (Cake) precondition. 

 

 

 

 

S0 A0 S1 A1 S2 

Have 

(Cake) 

Have (Cake) 

¬ Have(Cake) 

Have (Cake) 

¬ Have(Cake) 

¬ Eaten 

(Cake) 

Eaten (Cake) 

¬ Eaten(Cake) 

Eaten (Cake) 

¬ Eaten(Cake) 

The planning graph for the “have cake and eat cake too” problem up to level 

lines indicate 

preconditions and effects. Mutex links are shown as curved gray lines. Not all mutex links 

are shown, because the graph would be too cluttered. In general, if two literals 
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• Planning graphs for heuristic estimation 

• A planning graph, once constructed, is a rich source of information about the problem. 

First, if any goal literal fails to appear in the final level of the graph, then the problem is 

unsolvable. Second, we can estimate the cost of achieving any goal literal gi from state 

s as the level at which gi first appears in the planning graph constructed from initial 

state. 

• it is common to use a serial planning graph for computing heuristics. A serial graph 

insists that only one action can actually occur at any given time step; this is done by 

adding mutex links between every pair of nonpersistence actions. Level costs extracted 

from serial graphs are often quite reasonable estimates of actual costs 

• To estimate the cost of a conjunction of goals, there are three simple approaches. The 

max-level heuristic simply takes the maximum level cost of any of the goal. 

• The level sum heuristic, following the subgoal independence assumption, returns the 

sum of the level costs of the goals; this can be inadmissible but works well in 

practice for problems that are largely decomposable. 

• The set-level heuristic finds the level at which all the literals in the conjunctive goal 

appear in the planning graph without any pair of them being mutually exclusive. This 

heuristic gives the correct values of 2 for our original problem and infinity for the 

problem without Bake (Cake). It is admissible, it dominates the max-level heuristic, and 

it works extremely well on tasks in which there is a good deal of interaction among 

subplans. It is not perfect, of course; for example, it ignores interactions among three or 

more literals. 

• The GRAPHPLAN algorithm 

This subsection shows how to extract a plan directly from the planning graph, rather than 

just using the graph to provide a heuristic. The GRAPHPLAN algorithm repeatedly 

adds a level to a planning graph with EXPAND-GRAPH. Once all the goals show up 

as non- mutex in the graph, GRAPHPLAN calls EXTRACT-SOLUTION to search for 

a plan that solves the problem. If that fails, it expands another level and tries again, 

terminating with failure when there is no reason to go on. 
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function GRAPHPLAN (problem) returns solution or failure 

graph ← INITIAL-PLANNING-GRAPH (problem) 

goals ← CONJUNCTS (problem. GOAL) 

nogoods ← an empty hash table 

for tl =0 to ∞ do 

if goals all non-mutex in St of graph then 

solution ← EXTRACT-SOLUTION (graph, goals, NUMLEVELS 

(graph), nogoods) 

if solution /= failure then return solution 

if graph and nogoods have both leveled off then 

return failure graph ← EXPAND-GRAPH (graph, 

problem) 

• The GRAPHPLAN algorithm. GRAPHPLAN calls EXPAND-GRAPH to add a level 

until either a solution is found by EXTRACT-SOLUTION, or no solution is possible. 

• The goal at (Spare, Axle) is not present in S0, so we need not call EXTRACT-

SOLUTION — we are certain that there is no solution yet. Instead, EXPAND-

GRAPH adds into A0 the three actions whose preconditions exist at level S0 (i.e., all 

the actions except PutOn (Spare, Axle)), along with persistence actions for all the 

literals in S0. The effects of the actions are added at level S1. EXPAND-GRAPH then 

looks for mutex relations and adds them to the graph. 

• At (Spare, Axle) is still not present in S1, so again we do not call EXTRACT-

SOLUTION. We call EXPAND-GRAPH again, adding A1 and S1 and giving us the 

planning graph shown in Figure.Now that we have the full complement of actions, it 

is worthwhile to look at some of the examples of mutex relations and their causes: 

• Inconsistent effects: Remove (Spare, Trunk) is mutex with LeaveOvernight because 

one has the effect At (Spare, Ground) and the other has its negation. 

• Interference: Remove (Flat, Axle) is mutex with LeaveOvernight because one has the 

precondition At (Flat, Axle) and the other has its negation as an effect. 

• Competing needs: PutOn (Spare, Axle) is mutex with Remove (Flat, Axle) because 

one has At (Flat, Axle) as a precondition and the other has its negation. 

• Inconsistent support: At (Spare, Axle) is mutex with At (Flat, Axle) in S2 because the 
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only way of achieving At (Spare, Axle) is by PutOn (Spare, Axle), and that is mutex 

with the persistence action that is the only way of achieving At (Flat, Axle). Thus, the 

mutex relations detect the immediate conflict that arises from trying to put two objects 

in the same place at the same time. 

Alternatively, we can define EXTRACT-SOLUTION as a backward search 

problem, where each state in the search contains a pointer to a level in the planning graph 

and a set of unsat- isfied goals. We define this search problem as follows: 

✓ The initial state is the last level of the planning graph, Sn, along with the set of goals 

from the planning problem. 

✓ The actions available in a state at level Si are to select any conflict-free subset of the 

actions in Ai−1 whose effects cover the goals in the state. The resulting state has level 

Si−1 and has as its set of goals the preconditions for the selected set of actions. By 

“conflict free,” we mean a set of actions such that no two of them are mutex and no two 

of their preconditions are mutex. 

✓ The goal is to reach a state at level S0 such that all the goals are satisfied. 

✓ The cost of each action is 1. 

Termination of GRAPHPLAN 

• The first thing to understand is why we can’t stop expanding the graph as 

soon as it has leveled off. Consider an air cargo domain with one plane and 

n pieces of cargo at airport A, all of which have airport B as their 

destination. In this version of the problem, only one piece of cargo can fit 

in the plane at a time.  

• The graph will level off at level 4, reflecting the fact that for any single piece 

of cargo, we can load it, fly it, and unload it at the destination in three steps. 

But that does not mean that a solution can be extracted from the graph at 

level 4; in fact, a solution will require 4n − 1 steps: for each piece of cargo we 

load, fly, and unload, and for all but the last piece we need to fly back to 

airport A to get the next piece. 

✓ Literals increase monotonically: Once a literal appears at a given level, it will appear 

at all subsequent levels. This is because of the persistence actions; once a literal shows 

up, persistence actions cause it to stay forever. 

✓ Actions increase monotonically: Once an action appears at a given level, it will appear 

at all subsequent levels. This is a consequence of the monotonic increase of literals; if 
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the preconditions of an action appear at one level, they will appear at subsequent levels, 

and thus so will the action. 

✓ Mutexes decrease monotonically: If two actions are mutex at a given level Ai, then they 

will also be mutex for all previous levels at which they both appear. The same holds for 

mutexes between literals. It might not always appear that way in the figures, because 

the figures have a simplification: they display neither literals that cannot hold at level 

Si nor actions that cannot be executed at level Ai. We can see that “mutexes decrease 

monotonically” is true if you consider that these invisible literals and actions are mutex 

with everything. 

• The proof can be handled by cases: if actions A and B are mutex at level Ai, it must 

be because of one of the three types of mutex. The first two, inconsistent effects and 

interference, are properties of the actions themselves, so if the actions are mutex at Ai, 

they will be mutex at every level.  

• The third case, competing needs, depends on conditions at level Si: that level must 

contain a precondition of A that is mutex with a precondition of B. Now, these two 

preconditions can be mutex if they are negations of each other (in which case they 

would be mutex in every level) or if all actions for achieving one are mutex with all 

actions for achieving the other. But we already know that the available actions are 

increasing monotonically, so, by induction, the mutexes must be decreasing. 

• No-goods decrease monotonically: If a set of goals is not achievable at a given level, 

then they are not achievable in any previous level. The proof is by contradiction: if they 

were achievable at some previous level, then we could just add persistence actions to 

make them achievable at a subsequent level. 

➢ Analysis of Planning approaches 

• Planning combines the two major areas of AI we have covered so far: search and 

logic. A planner can be seen either as a program that searches for a solution or as 

one that (construc- tively) proves the existence of a solution.  

• The cross-fertilization of ideas from the two areas has led both to improvements in 

performance amounting to several orders of magnitude in the last decade and to an 

increased use of planners in industrial applications. Unfortunately, we do not yet 

have a clear understanding of which techniques work best on which kinds of 

problems. Quite possibly, new techniques will emerge that dominate existing 

methods. 
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• Planning is foremost an exercise in controlling combinatorial explosion. If there are 

n propositions in a domain, then there are 2n states. As we have seen, planning is 

PSPACE- hard. Against such pessimism, the identification of independent 

subproblems can be a pow- erful weapon. In the best-case full decomposability of the 

problem, we get an exponential speedup.  

• Decomposability is destroyed, however, by negative interactions between actions. 

GRAPHPLAN records mutexes to point out where the difficult interactions are. 

SATPLAN rep- resents a similar range of mutex relations, but does so by using the 

general CNF form rather than a specific data structure.  

• Forward search addresses the problem heuristically by trying to find patterns 

(subsets of propositions) that cover the independent subproblems. Since this 

approach is heuristic, it can work even when the subproblems are not completely 

independent. Sometimes it is possible to solve a problem efficiently by recognizing 

that negative interactions can be ruled out.  

• We say that a problem has serializable subgoals if there exists an order of subgoals 

such that the planner can achieve them in that order without having to undo any of 

the previously achieved subgoals. For example, in the block’s world, if the goal is 

to build a tower (e.g., A on B, which in turn is on C. 

•  Then the subgoals are serializable bottom to top: if we first achieve C on, we  will 

never have to undo it while we are achieving the other subgoals. A planner that 

uses the bottom-to-top trick can solve any problem in the block’s world without 

backtracking (although it might not always find the shortest plan). 

• As a more complex example, for the Remote Agent planner that commanded 

NASA’s Deep Space One spacecraft, it was determined that the propositions 

involved in command- ing a spacecraft are serializable.  

• This is perhaps not too surprising, because a spacecraft is designed by its engineers 

to be as easy as possible to control (subject to other constraints). Taking advantage 

of the serialized ordering of goals, the Remote Agent planner was able to eliminate 

most of the search. This meant that it was fast enough to control the spacecraft in 

real time, something previously considered impossible. 

• Planners such as GRAPHPLAN, SATPLAN, and FF have moved the field of 

planning forward, by raising the level of performance of planning systems, by 

clarifying the repre- sentational and combinatorial issues involved, and by the 
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development of useful heuristics. However, there is a question of how far these 

techniques will scale. It seems likely that further progress on larger problems cannot 

rely only on factored and propositional representations, and will require some kind 

of synthesis of first-order and hierarchical representations with the efficient 

heuristics currently in use. 

➢ PLANNING AND ACTING IN REAL WORLD 

✓ Time, Schedules and Resources 

• The classical planning representation talks about what to do, and in what order, but the 

repre- sentation cannot talk about time: how long an action takes and when it occurs. 

For Example, the planners of could produce a schedule for an airline that says which 

planes are assigned to which flights, but we really need to know departure and arrival 

times as well. This is the subject matter of scheduling. The real world also imposes 

many resource constraints. 

• For Example, an airline has a limited number of staff and staff who are on one flight 

cannot be on another at the same time. This section covers methods for representing 

and solving planning problems that include temporal and resource constraints. 

• The approach we take in this section is “plan first, schedule later”: that is, we divide 

the overall problem into  planning phase in which actions are selected, with some 

ordering constraints, to meet the goals of the problem, and a later scheduling phase, in 

which tempo- ral information is added to the plan to ensure that it meets resource and 

deadline constraints. 

 

Jobs ({AddEngine1 ≺ AddWheels1 ≺ Inspect1}, 

{AddEngine2 ≺ AddWheels2 ≺ Inspect2}) 

Resources (EngineHoists (1), WheelStations (1), Inspectors (2), LugNuts 

(500)) Action (AddEngine1, DURATION:30, 

USE: EngineHoists (1)) 

Action (AddEngine2, 

DURATION:60, USE: 

EngineHoists (1)) Action 

(AddWheels1, DURATION:30, 

CONSUME: LugNuts (20), USE: WheelStations (1)) 
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Action (AddWheels2, DURATION:15, 

CONSUME: LugNuts (20), USE: WheelStations (1)) 

Action (Inspect i, DURATION:10, 

USE: Inspectors (1)) 

 

 

Figure A job-shop scheduling problem for assembling two cars, with 

resource con- straints. The notation A ≺ B means that action A must precede 

action B. 

• This approach is common in real-world manufacturing and logistical 

settings, where the plan- ning phase is often performed by human 

experts.  

• The automated methods can also be used for the planning phase, 

provided that they produce plans with just the minimal ordering 

constraints required for correctness. G RAPHPLAN SATPLAN and 

partial-order planners can do this; search-based methods produce 

totally ordered plans, but these can easily be converted to plans with 

minimal ordering constraints. 

➢ Representing temporal and resource constraints 

• A typical job-shop scheduling problem, as first introduced in consists of a 

set of jobs, each of which consists a collection of actions with ordering 

constraints among them. Each action has a duration and a set of resource 

constraints required by the action.  

• Each constraint specifies a type of resource (e.g., bolts, wrenches, or pilots), 

the number of that resource required, and whether that resource is consumable 

(e.g., the bolts are no longer available for use) or reusable (e.g., a pilot is 

occupied during flight but is available again when the flight is over).  

• Resources can also be produced by actions with negative con- sumption, 

including manufacturing, growing, and resupply actions. A solution to a job-

shop scheduling problem must specify the start times for each action and must 

satisfy all the tem- poral ordering constraints and resource constraints. As with 
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search and planning problems, solutions can be evaluated according to a cost 

function; this can be quite complicated, with nonlinear resource costs, time-

dependent delay costs, and so on. For simplicity, we assume that the cost 

function is just the total duration of the plan, which is called the makespan. 

➢ RESOURCES statement declares that there are four types of resources, and gives 

the number of each type available at the start: 1 engine hoist, 1 wheel station, 2 

inspectors, and 500 lug nuts. The action schemas give the duration and resource needs 

of each action. The lug nuts are consumed as wheels are added to the car, whereas 

the other resources are “borrowed” at the start of an action and released at the action’s 

end. 

• The representation of resources as numerical quantities, such as Inspectors (2), rather 

than as named entities, such as Inspector (I1) and Inspector (I2), is an example of a 

very general technique called aggregation. The central idea of aggregation is to group 

individual objects into quantities when the objects are all indistinguishable with respect 

to the purpose at hand. 

✓ Solving scheduling problems 

• We begin by considering just the temporal scheduling problem, ignoring resource 

constraints. To minimize makespan (plan duration), we must find the earliest start times 

for all the actions consistent with the ordering constraints supplied with the problem. It 

is helpful to view these ordering constraints as a directed graph relating the actions, as We 

can apply the critical path method (CPM) to this graph to determine the possible start 

and end times of each action.  

• A path through a graph representing a partial-order plan is a linearly ordered sequence 

of actions beginning with Start and ending with Finish. 

• The critical path is that path whose total duration is longest; the path is “critical” 

because it determines the duration of the entire plan shortening other paths doesn’t 

shorten the plan as a whole, but delaying the start of any action on the critical path 

slows down the whole plan.  

• Actions that are off the critical path have a window of time in which they can be 

executed. The window is specified in terms of an earliest possible start time, ES, and a 

latest possible start time, LS.  
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• The quantity LS – ES is known as the slack of an action. that the whole plan will 

take 85 minutes, that each action in the top job has 15 minutes of slack, and that each 

action on the critical path has no slack (by definition). Together the ES and LS times 

for all the actions constitute a schedule for the problem. 

• The following formulas serve as a definition for ES and LS and also as the outline of 

a dynamic-programming algorithm to compute them. A and B are actions, and A ≺ B 

means that A comes before B: 

ES (Start) = 0  

ES (B) = maxA ≺ B ES (A)+ Duration(A) 

LS (Finish) = ES (Finish) 

LS (A) = minB > A LS (B) − Duration (A). 

• The idea is that we start by assigning ES (Start) to be 0. Then, as soon as we get an 

action B such that all the actions that come immediately before B have ES values 

assigned, we set ES (B) to be the maximum of the earliest finish times of those 

immediately preceding actions, where the earliest finish time of an action is defined as 

the earliest start time plus the duration.  

• This process repeats until every action has been assigned an ES value. The LS 

values are computed in a similar manner, working backward from the Finish action 

• The complexity of the critical path algorithm is just O(Nb), where N is the number of 

actions and b is the maximum branching factor into or out of an action. (To see this, 

note that the LS and ES computations are done once for each action, and each 

computation iterates over at most b other actions.) Therefore, finding a minimum-

duration schedule, given a partial ordering on the actions and no resource constraints, 

is quite easy. 

• Critical-path problems are easy to solve because they are de- fined as a conjunction of 

linear inequalities on the start and end times. When we introduce resource constraints, 

the resulting constraints on start and end times become more compli- cated. require 

the same EngineHoist and so cannot overlap.  

• The “cannot overlap” constraint is a disjunction of two linear inequalities, one for 

each possible ordering. The introduction of disjunctions turns out to make scheduling 



Section 10.2. Algorithms for Planning as State-Space Search 22 
 

with resource constraints NP-hard. 

✓ Conditional Planning 

● If the world is nondeterministic or partially observable then percepts usually provide 

information, i.e., split up the belief state 

 

 

 

Conditional plans check (any consequence of KB +) percept 

. . ., if C then PlanA else PlanB... 

Execution: check C against current KB, execute “then” or “else” Need 

some plan for every possible percept 

game playing: some response for every opponent moves 

backward chaining: some rule such that every premise satisfied 

 

✓ MONITORING AND REPLANNING 

• Plan with Partially Ordered Plans algorithms 

• Process plan, one step at a time 

• Validate planned conditions against perceived reality 

• “Failure” = preconditions of remaining plan not met 
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• Preconditions ofremaining plan 

= all preconditions of remaining steps not achieved by remaining steps 

= all causal links crossing current time point 

• Run Partially Ordered Plans algorithms again 

Resume Partially Ordered Plans to achieve open conditions from current state IPEM 

keep updating Start to match current state 

links from actions replaced by links from Start when done 

Example: 

 

 

continuous planning proposes to replace the classic predefined and regular planning 

occasions with a continuous implementation of the planning in rapid parallel cycles. 

Planning is no longer triggered by a given date in the calendar, but by internal and 

external events as they occur. 
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• The plan stays more up-to-date: since the plan is updated every time a change occurs 

in the internal or external environment, the latest version of the plan automatically 

includes all changes up to that point. 

• The plan is more accurate: because the plan can be updated at any time to incorporate 

new information, organizations do not need to project themselves into the future 

quite so strongly, and can afford to have a more simple, less detailed plan. Instead, 

the plan will be quickly updated as projects evolve and more specific and detailed 

data become available. This means less “guesstimates” and more accurate data. 

• Top management (including financial and business people) get involved in the 

planning process more regularly and frequently. This in turn allows planning to 

become a tool that leaders can use to think about changes and the impact these will 

have on the business. 

• Because re-planning occurs much more frequently, there is an additional motivation 

to improve and streamline the process (and make it more easily repeatable) 

switching to continuous planning requires a massive change in mindset, at all levels 

of the organization. Specifically, all the people involved in one way or another in 

the planning process (which is most of any organization) need to shift the way they 

look at planning: 

• From a static, time-bound and ritual exercise to a dynamic, open-ended process that 

reacts to changes in the internal and external environment. 

This means that the way they work with the planning will change: instead of 

something constant that provides a fixed goalpost, the plan becomes something that 

can change from day to day, and those changes must be taken into account in the 

daily execution of the plan. 

• From something whose value is in the end document (the plan) to something whose 

value is in the process, specifically in the way the activity of planning helps 

understand problems and risks. 

• From something they get involved in maybe twice a year, to something they must 

engage with perhaps on a daily basis. 
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✓ Considerations for implementing continuous planning 

1. Choosing the level at which to implement continuous planning: 

Continuous planning is seldom applied at all levels of the organization. Companies 

wishing to implement it should therefore look at their planning practices, and 

identify at which levels implementing continuous planning would generate the 

greatest benefits. 

2. Ensuring that stakeholders at all levels of the organization make the leap to a 

mindset of continuous planning: 

Regardless of the level at which continuous planning is implemented, it is important 

that all levels be aware of the principles of incremental development, and that they 

understand what continuous planning can and cannot do. There is no point in 

implementing continuous planning for instance at the product level if the business 

level is still going to insist on having a 1-year plan (and vice versa). 

3. Understanding of key business drivers: 

Not all the changes to the internal or external environment will have the same impact 

on the organization’s plan. Since planning become a much more frequent activity, it 

is important that the organization understand what its key business drivers are, and 

how to build (and easily retrieve) information about these drivers to make the 

process more fluid. 
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